Aquaculture for all

Antimicrobial Activity, Antibiotic Susceptibility and Virulence Factors of Lactic Acid Bacteria of Aquatic Origin Intended for Probiotics in Aquaculture

Nutrition Health Environment +3 more

Aquaculture has the potential to make a significant contribution to the increasing demand for aquatic food in most world regions; however, in order to achieve this goal, the sector will have to face significant challenges, including the production intensification, the disease control and the prevention of the environmental deterioration.

by

Researchers from the Universidad Complutense de Madrid, Spain, have studied antimicrobial activity, antibiotic susceptibility and virulence factors of Lactic Acid Bacteria of aquatic origin intended for use as probiotics in aquaculture.

Background

The microorganisms intended for use as probiotics in aquaculture should exert antimicrobial activity and be regarded as safe not only for the aquatic hosts but also for their surrounding environments and humans. The objective of this work was to investigate the antimicrobial/bacteriocin activity against fish pathogens, the antibiotic susceptibility, and the prevalence of virulence factors and detrimental enzymatic activities in 99 Lactic Acid Bacteria (LAB) (59 enterococci and 40 non-enterococci) isolated from aquatic animals regarded as human food.

Results

These LAB displayed a broad antimicrobial/bacteriocin activity against the main Grampositive and Gram-negative fish pathogens. However, particular safety concerns based on antibiotic resistance and virulence factors were identified in the genus Enterococcus (86%) (Enterococcus faecalis, 100%; E. faecium, 79%). Antibiotic resistance was also found in the genera Weissella (60%), Pediococcus (44%), Lactobacillus (33%), but not in leuconostocs and lactococci. Antibiotic resistance genes were found in 7.5% of the non-enterococci, including the genera Pediococcus (12.5%) and Weissella (6.7%). One strain of both Pediococcus pentosaceus and Weissella cibaria carried the erythromycin resistance gene mef(A/E), and another two P. pentosaceus strains harboured lnu(A) conferring resistance to lincosamides. Gelatinase activity was found in E. faecalis and E. faecium (71 and 11%, respectively), while a low number of E. faecalis (5%) and none E. faecium exerted hemolytic activity. None enterococci and non-enterococci showed bile deconjugation and mucin degradation abilities, or other detrimental enzymatic activities.

Conclusions

To our knowledge, this is the first description of mef(A/E) in the genera Pediococcus and Weissella, and lnu(A) in the genus Pediococcus. The in vitro subtractive screening presented in this work constitutes a valuable strategy for the large-scale preliminary selection of putatively safe LAB intended for use as probiotics in aquaculture.

Further Reading

You can view the full report and list of authors by clicking here.

April 2013

Create an account now to keep reading

It'll only take a second and we'll take you right back to what you were reading. The best part? It's free.

Already have an account? Sign in here