Methods
Catfish were divided into three groups, first control group include 20 fish divided into two tanks each one contain 10 fish, second deltamethrin group, where Fish exposed to deltamethrin in a concentration (0.75ug/l) and thrid Vitamin E group, Fish exposed to deltamethrin and vitamin E at a dose of 12ug/l for successive four days.
Serum, liver, kidney and Gills were collected for biochemical assays. Tissue oxidative stress biomarkers malondialdhyde (MDA) and catalase activity in liver, kidney and gills tissues, serum liver enzymes (ALT and AST), serum albumin, total protein, urea and creatinine were analysed.
Results
Our results showed that 48 h. exposure to 0.75 ug/l deltamethrin significantly (p < 0.05) increased lipid peroxidation (MDA) in the liver, kidney and gills while catalase activity was significantly decreased in the same tissues. This accompanied by significant increase in serum ALT, AST activity, urea and creatinine and a marked decrease in serum albumin and total proteins.
Conclusions
It could be concluded that deltamethrin is highly toxic to catfish even in very low concentration (0.75 ug/l). Moreover the effect of deltamethrin was pronounced in the liver of catfish in comparison with kidneys and gills. Moreover fish antioxidants and oxidative stress could be used as biomarkers for aquatic pollution, thus helping in the diagnosis of pollution. Adminstration of 12 ug/l alpha-tocopherol restored the quantified tissue and serum parameters, so supplementation of alpha-tocopherol consider an effective way to counter the toxicity of deltamethrin in the catfish.
Further Reading
- | You can view the full report by clicking here. |