History and Tradition
The capture and culture of aquatic organisms from rice fields has a long history and tradition especially in Asia, where the availability of rice and fish has been associated with prosperity and food security. Designs of rice fields with fish on ancient Chinese pottery from tombs of the Han Dynasty (206 BC225 AD), inscriptions from a thirteenth century king of Thailand, and traditional sayings, such as one from Viet Nam rice and fish are like mother and children, are all testament that the combination of rice and fish has traditionally been regarded as an indicator of wealth and stability.
Status
The cultivation of almost 90 percent of the worlds rice crops in
irrigated, rainfed and deep-water systems equivalent to about
134 million hectares offers a suitable environment for fish and
other aquatic organisms. Rice-based ecosystems provide habitats
for a wide range of aquatic organisms extensively used by local
people. They also offer opportunities for the enhancement and
culture of aquatic organisms. The different integrations of rice
and fish farming either on the same plot, on adjacent plots
where by-products of one system are used as inputs on the other,
or consecutively are all variations of production systems that
aim to increase the productivity of water, land and associated
resources while contributing to increased fish production. The
integration can be more or less complete depending on the
general layout of the irrigated rice plots and fishponds. There
are many options for enhancing food production from fish in
managed aquatic systems, which are ingeniously realized by
farmers all over the world.
As regards the general scale of ricefish culture, China is the
main producer with an area of about 1.3 million hectares of
rice fields with different forms of fish culture, which produced
1.2 million tonnes of fish and other aquatic animals in 2010.
Other countries reporting their ricefish production to FAO include
Indonesia (92 000 tonnes in 2010), Egypt (29 000 tonnes in 2010),
Thailand (21 000 tonnes in 2008), the Philippines (150 tonnes in
2010) and Nepal (45 tonnes in 2010). Trends observed in China show
that fish production from rice fields has increased thirteenfold in
the last two decades, and ricefish culture is now one of the most
important aquaculture systems in China, making a significant
contribution to rural livelihoods and food security. A broad range of
aquatic species including different carps, tilapias, catfish and breams
are being farmed in rice fields. Market prices and preferences may
provide important opportunities to farmers for a more diversified
use of species, especially targeting eels, loaches and various
crustaceans, and the sale and marketing of higher-valued organic
products. Also in India the practice cuts across different ecosystems
from terraced rice fields in the hilly terrain to coastal lands and deep-water rice fields, and reportedly covered an area of two million
hectares in the 1990s. Ricefish farming is being tried and practised in other
countries and continents although to a lesser extent. Apart from Asia,
activities have been reported from, among others, Brazil, Egypt, Guyana,
Haiti, Hungary, Iran (Islamic Republic of), Italy, Madagascar, Malawi, Nigeria,
Panama, Peru, Senegal, Suriname, the United States of America, Zambia, and
several countries in the Central Asia and Caucasus region.
Benefits, Issues and Challenges
Ricefish farming provides additional food and income by diversifying farm
activities and increasing yields of both the rice and fish crops. Evidence
shows that although rice yields are similar, the integrated ricefish system
uses 68 percent less pesticide than rice monoculture. Fish feed on rice
pests, thus reducing pest pressure. Together with the fact that most broadspectrum
insecticides are a direct threat to aquatic organisms and healthy
fish culture, knowledgeable farmers are much less motivated to spray
pesticides. Therefore, it has been suggested that fish farming in rice and
the integrated management of pests in rice production are complementary
activities. Similarly, complementary use of nitrogen between rice and fish
resulted in 24 percent less chemical fertilizer application and low nitrogen
release into the environment, suggesting positive interactions in the use
of resources. Fertilizers and feeds used in the integrated system are more
efficiently utilized and converted into food production, and nutrient
discharge to the natural environment is minimized. Ricefish farming
reduces the emission of methane by almost 30 percent compared with
traditional rice farming.
The challenges related to ricefish farming are not different from those
related to general aquaculture development. They include availability of and
access to seed, feed and capital as well as natural risks associated with water
control, disease and predation. Freshwater is rapidly becoming one of the
scarcest natural resources, and competition for freshwater is among the most
critical challenges facing developing countries. Sufficient and good-quality
water is a key resource in ricefish farming, which increases the productivity
per unit of water used. Ricefish farming and other forms of aquaculture in
rice-based farming are one component of integrated water management
approaches that produce food of high nutritional quality and, often, high
economic value. Profits vary depending on production characteristics but
income increases of up to 400 percent compared with rice monoculture have
been reported and these may be even greater where high-value aquatic
species are farmed.
The use of aquatic genetic resources in rice is part of the work of the
FAO Fisheries and Aquaculture Department with the Commission on Genetic
Resources for Food and Agriculture as part of the preparation for The State of
the World on Aquatic Genetic Resources. In addition, the ricefish system has
been included as one of the Globally Important Agricultural Heritage Systems
under an FAO initiative supported by the Global Environment Facility.
It is the combination of efficient production and use of resources coupled
with environmental benefits that has prompted recent international gatherings of the International Rice Commission, the Convention of
Biological Diversity, and the Ramsar Convention to recommend that riceproducing
countries promote the further development of integrated rice
and fish systems as a means of enhancing food security and sustainable rural
development. In addition, some countries with a long tradition in integrated
ricefish systems are giving renewed attention to the complex rice ecosystem
with a focus on its role in biodiversity conservation, as in the Japanese
satoyama landscape initiative.
The Way Forward
An increase in integrated farming of rice and fish is possible and would
benefit farmers, consumers and the environment worldwide. Several
organizations, active in global policies for food production and/or
environmental sustainability, have become aware of this, and key policymakers
have formulated and disseminated relevant recommendations
to governments, institutions and stakeholders. This is encouraging and,
given the benefits of ricefish farming, it is important to give priority to its
continued promotion.
Taking China, the main producer, as an example, with currently
15 percent of the suitable rice area under integrated ricefish cultivation,
there is considerable scope for expansion. The same is true for many
rice-producing countries around the globe. Similarly, there is much room
for intensification of existing systems. Capacity building with increased
knowledge and improved management techniques will be critically
important, in particular focusing on all farming household members, both
men and women, as well as extension agents. In recent decades, excellent
progress has been achieved by applying a farmer field school (FFS)
approach. This is a discovery-based learning approach where small groups
of farmers meet regularly, facilitated by a specially trained technician, to
explore new methods, through simple experimentation and group discussion
and analysis, over the course of a growing season. This approach allows
farmers to modify and adapt newly introduced methods to local contexts
and knowledge, ultimately providing a higher likelihood of appropriate
adaptation and adoption of improved technologies. It is only relatively
recently that aquaculture has been integrated into an FFS-style curriculum in
Guyana and Suriname.
August 2012